Selective pharmacogenetic inhibition of mammalian target of Rapamycin complex I (mTORC1) blocks long-term synaptic plasticity and memory storage.

نویسندگان

  • Loredana Stoica
  • Ping Jun Zhu
  • Wei Huang
  • Hongyi Zhou
  • Sara C Kozma
  • Mauro Costa-Mattioli
چکیده

Both the formation of long-term memory (LTM) and late-long-term potentiation (L-LTP), which is thought to represent the cellular model of learning and memory, require de novo protein synthesis. The mammalian target of Rapamycin (mTOR) complex I (mTORC1) integrates information from various synaptic inputs and its best characterized function is the regulation of translation. Although initial studies have shown that rapamycin reduces L-LTP and partially blocks LTM, recent genetic and pharmacological evidence indicating that mTORC1 promotes L-LTP and LTM is controversial. Thus, the role of mTORC1 in L-LTP and LTM is unclear. To selectively inhibit mTORC1 activity in the adult brain, we used a "pharmacogenetic" approach that relies on the synergistic action of a drug (rapamycin) and a genetic manipulation (mTOR heterozygotes, mTOR(+/-) mice) on the same target (mTORC1). Although L-LTP and LTM are normal in mTOR(+/-) mice, application of a low concentration of rapamycin-one that is subthreshold for WT mice-prevented L-LTP and LTM only in mTOR(+/-) mice. Furthermore, we found that mTORC1-mediated translational control is required for memory reconsolidation. We provide here direct genetic evidence supporting the role of mTORC1 in L-LTP and behavioral memory.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of high intensity interval training on complex mammalian target of Rapamycin 1 (mTORC1) pathway in Flexor hallucis longus muscle (FHL) of streptozotocin-induced diabetic rats

Background and Objective: The most well-known mechanism for regulating complex mammalian target of rapamycin 1 (mTORC1) pathway activity is the insulin/IGF-1-dependent pathway in skeletal muscles. The role of high intensity interval training (HIIT) exercise has not yet been studied on this important pathway in protein synthesis among people with type 2 diabetes. The purpose of the present study...

متن کامل

Modulation of BK channels contributes to activity-dependent increase of excitability through MTORC1 activity in CA1 pyramidal cells of mouse hippocampus

Memory acquisition and synaptic plasticity are accompanied by changes in the intrinsic excitability of CA1 pyramidal neurons. These activity-dependent changes in excitability are mediated by modulation of intrinsic currents which alters the responsiveness of the cell to synaptic inputs. The afterhyperpolarization (AHP), a major contributor to the regulation of neuronal excitability, is reduced ...

متن کامل

PS259. TNF-a from hippocampal microglia induces working memory deficits by acute stress in mice.

Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphate-activated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energ...

متن کامل

PS260. A Roadmap to Golden hour intervention for Posttraumatic Stress Disorder

Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphate-activated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energ...

متن کامل

PS261. Heart Rate Variability of Posttraumatic Stress Disorder in Korean Veterans

Both the formation of long-term memory (LTM) and dendritic spine growth that serves as a physical basis for the long-term storage of information require de novo protein synthesis. Memory formation also critically depends on transcription. Adenosine monophosphate-activated protein kinase (AMPK) is a transcriptional regulator that has emerged as a major energy sensor that maintains cellular energ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 108 9  شماره 

صفحات  -

تاریخ انتشار 2011